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ABSTRACT

If X and Y are random variables such that P(X> Y) -1 and

the conditional distribution of Y gien-X is binomial, then Moran

(1952) showed that Y and (X-Y) are independent if X is Poisson.

.i;~ , !*)-e extendsoran's result to a more general type of conditional

distribution of Y given X, using only partial independence of Y

and X-Y. This provides a generalization of a recent result of

Janardhan and Rao (1982) on the characterization of generalized

Polya-Eggenberger distribution. A variant of Moran's theorem is

proved which generalizes the results of Patil and Seshadri (.1964)

on the characterization of the distribution of a random variable

X based on some conditions on the conditional distribution of Y

given X and the independence of Y and X-Y.
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1. INTRODUCTION

If X and Y are random variables such that POCK!Y) -i, X is

Poisson and the conditional distribution of Y given X-z is binom-

ial with parameters z and p, a simple calculation shows that X-Y

and Y are independent and Poisson. Moran (1952) proved the follow-

ing converse result. Let

P(X-n, Y=r)=(n )Pn (-Pn n' r-0,l,...,n; n> (1.1)

where gn -P(X-n), with g0 <l, and pn e (0,1) and fixed for each n.

Then Y and (X-Y) are independent iff p n constant independent of

n, and X is Poisson.

Chatterji (1963) proved the same result by replacing (1.1) by

the weaker conditions

P(X r,Y -r) =prgr
rrl

P(X r+l, Y r) (r+l)p (r+l 1g
Y~r=2 1  r r4_) 1  2~

P(X= r+2, Y - r) - 2-(r+l) (r+2)p+ 2 (l- pr+2) r+2 (1.2)

r = 0,1,2,...

Recently, some extensions of Moran's result have been ob-

tained by Gerber (1980) and Janardhan and Rao (1982). In this

paper, we prove some general results which provide some exten-

sions and refinements of the results of the above quoted authors.

We shall refer to their work in the remarks following the main

theorems.

2. AN EXTENSION OF MORAN'S RESULT

Let ((a n,b n,h n): n=0,l,...} be a sequence of real vectors

such that a >0, b >0, h >0 for all n>O with b0,bI and b2 >0.n n - n1 2
Define the family of conditional distributions

F ~rn) Clh r a ~1.l
n- n n-r(

r-0,1,...,n; n>O

I. Z
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where c are such that F(lln)+...+FCnln) i, n >0. We prove then

following general theorem.

Theorem 2.1. Let (X,Y) be a 2-vector random variable with non-

negative integer components, and denote P (X - n) -g and P (Y-rI X-n)

- S(rjn). Assume that P(X-0) - go <1 and S(rin) - F(rln) as de-

fined in (2.1). Then the following are equivalent:

i) P(Y=rlX=Y)=P(Y-rX-Y+l)-=P(Y-rlX-Y+2), r-0,1...

(ii) hn -A c
n and gn = (g 0 /c 0)c ,n  n =0,1,...,for

some A, a and B> 0.

(iii) Y is independent of X-Y.

Proof. It is easy to check (ii) -> (iii) -> (i). So, it is suffi-

cient to show that i) -> (ii) to prove the theorem. Suppose that

(i) is valid. Then

grS(rlr) g r+1 S(rIr+l) g r+2 S(rIr+2)
P(X-Y) P(X-Y+1) P (X-Y+2)

In view of the assumptions imposed on the sequence n,b nh n):

n>0}, (2.2) implies that g r>0 for all r>0. Consequently

9 h r+l bo
gr+2 Cr+l P(X=Y+1) hr+l
gr+l C r+2 P(X-Y) r b1

hr+2

hr-1 bl

P(X-Y+2) -- r-l,... (2.3)
P(X-Y+l) hr 2 b2

and hence 
r+2

hr+2 . -P2 (X-Y+l) 1/2 . cx (say), r0,l...
h r P(Xi'Y)P(X-Y+2) b2

which implies that

hr r -1,2,... (2.4).

for some positive constant A. Suhstituting (2.41 in (2,31 leads

to

4. " " " " 2, " " "," "- .f ";' -'"% " ".. '- ' '' " " " . ,, # . . " " "
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.9 r+2 -. S,..
Cr+2  Cr+l'

where 8 = b0A 0P(XY+)/b1 P(X-Y). Hence, using (2.2) with r -0

gr go r
.- a , rl2..cr C 0.

which completes the proof.

The following corollary is an imporved version of Moran's

result.

Corollary 1. Let (X,Y) be as in Theorem 2.1 with

SCrlnj l r Cn p. Pn- . r-O,1,,..,n; nP,. 5

for some fixed sequence {pn: P n e G1,11, n-Q,1,... Then

Theorem 2.1 holds with Ciii replaced by,

(ii)' Pn = constant independently of n and {gnI is a

Poisson distribution.

Proof. Note that (2.5) can be written as

nPn r/2 Pn -(n-r)/2

S(rjn) L- - r = 0,i,... ,n; n>0.
[Pn (1-P n)] ]-n/2'

This is of the form (2.1) with a = b - (n!)-  andn n

Pn 1/2 c [P (lPn ) i-n/2
h s" ( and c
n 1-pn n

If (i) is valid, then Theorem 2.1 implies

n

[Pn/(l-Pn)] ay , n 1,2,...

for some positive constants a and y. Hence

c (y-n/2 + ay n/2)a-n/2 /n!, n -l,2,,,.n
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which implies that, for appropriate B and 6,

9= Ban a n2(-n/2 +ay n/2 )n/InOt*
gn *'Ba-n~ n/2 +ay ')n/n!, n=O,l,...

Since g=l, we must have Y-1 in which case {gn} is a Poisson
0

distrihution and p is a constant. This completes the proof.

Remark 1. If the condition (i) in Theorem 2.1 is replaced by

P(Y=r) =P(Y=rIX=Y+j) j -2,3...; r1>O (2.6)

then the conclusion of the theorem does not remain valid as the

following example shows. Let

Se-A An/n!, n = 2,3,...

g ,-An ae , n - 1

e- (1 + 1-a), n = 0

and

n r n-r

": S(rjn)-
1 pr(l_p)l-r(r r , r - 0,1; n - 1

where 0 <a, p<l and X>0. It is easy to see that if (X,Y) is

the corresponding random vector, then it satisfies (2.6); but

the distribution of X here is not of the form given in (ii) of

Theorem 2.1.

Remark 2. Gerber (1980) obtained a multivariate generalization
of Moran's theorem with some restrictions on the distributions of

the individual random variables. He established a result similar

to the equivalence of our conditions (ii) and (iii) of Theorem

2.1. The main interest of our theorem is in showing the equi-

valence of thecondition (i) with (ii) and (iii).

We prove the following theorem which extends the results

of Janardhan and Rao (1982). We need the following definitions.

A non-negative integer valued random variable X is said to have

I 
?"

- • . . . . .. . . . . . . - -- "-' "- -' . "- " ". . " '. - " ' - "- " "- . "" '. "-"- "- " ',.' ",... . .,.. . S. ,.,,. ,,. " "*.
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a GPED (h,t,c,X), i.e., generalized Polya-Eggenberger distribu-

tion, if

h(h+rt)(rc r -

P(X-r) = K(h,t,c,x) (h+rt) r ,l... (2.7)" ~~~~(h+rt)r! , fOl,.(27

for some X >0, h >0, t > 0, (c+t) > 0 such that the distribution

is well defined, with K(h,t,c,X) as the normalizing constant,

where the notation m(rsc)

is used. A non-negative integer valued random variable X is said

to have a G1PD (n,a,b,c,t), i.e., generalized Markov-Polya distri-
bution if

P(X-n) n) ab(a+b+nt)(a+rt) (rc)(b47rt) (n-r,c)
r (a+b)(a+rt) (b+n-rt) (a+b+nt) (n,c) (2.8)

r - 0,l,...,n, where a>O, b>O, t>O such that (c+t)>0. [We

note that neither GPED or GMPD as defined above possesses the

identifiability property in terms n" its parameters. However,

this does not effect our results in the present investigation.

Also it is possible to define these distributions with some of the

parameters as negative. We do not deal with such cases here.]

Theorem 2.2. Let [(a n,b n): n-l,2,...} be a sequence of real

vectors with positive components such that a +b -A (a fixedn n

constant) for all n>l. Further let (X,Y) be a 2-vector random

variable with non-negative integral components such that go< 0 ,

where g =P(X-n), and the survival distribution S(.In) is GMPD

(n,a ,b 'Ct). Then the following conditions are equivalent:
n n

(i) P(Y-rlX-Y) =P(Y=rlX=Y+ ) ;P(X-Y-rlY=Q)-P(X-YmrlY-l),

r 0,1,.... (2.9)

(ii) X has GPED (A,t,c,X) for some A >0 and a - constant
n

independently of n.

(iii) Y and X-Y are independent.

Proof. It is easy to check (ii) -> (iii) -> (i). We shall show

that (i) -> (iii). Clearly (i) is equivalent to

'-r-44 Sz.'.- ~? Z %.V4.*.
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S (r r) g /P(X-y) -S (r r+l) g /P (X-Y+l)

S O r) gr/P Y-O) S (i r+l) gr+l3/P (Y-r) r (2.10)

The fact that a r,b r> 0 for all r >1 and go < 1 implies in view ofLr r
(2.10) that gr > 0 for all r> 0 and hence (2.10) gives

[S(rlr)/S(Olr)] udS~rlr+l)/S(llr+l), r=0,1,2,... (2.11)

where d = P(Y-1)P(X-Y)/P(X-Y+)P(Y=0). Since S(rln) is of the

form (2.8) we can rewrite (2.11) as

a r (a r+rt+c)(rlc) (a r+l+rt+c)(rlc)
h--r ( rc c d , r= 1,2,.... (2.12)b r(br (+rt+c) (r-lc) (br+lrt+c) (r-l,c)

Suppose that (a2/b) d. Then (2.12) implies that (a r/b ) is

strictly monotonic which contradicts the assumption that at least

two ar's are equal. Then (a2 /b2) - d and hence, using (2.12),

we conclude inductively that a r constant independently of r.r
Substituting in (2.10), we get for appropriate B and A

"r~ s(rFZr1) gr
= , (A+rt) (- ) (r+l,c) gr

(A+r+lt) (A+rt) (r,c) (r+l)

4-1 (Arlt) (r+1 gO r = 0,1,2,...
(A+r+lt) (r+l) !

Hence {g n is GPED (A,t,c,A). This completes the proof.

Remark 3. Theorem 2.2 is an improvement over that of Janardhan

and Rao (1982) in the sense that the condition of independence is
weakened by (2.9). On the other hand, the special choice that
a n 's are equal for at least two values of n puts a restriction

on the sequence {a n. However, this latter condition can ben
J. avoided for the case when (c+t) > 0 as follows.

Mia M ('
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If (alb) > d for some s> 1, then (2.12) implies that

fa r-s,s+l,...} is increasing and tends to a limit, say a<A.
r

The equation (2.12) then yields that

a r-l r-l
r  (i + 0 )} = d R (1 + Kb r-lk r kl krr k=l fl

where 0k and 0 are smaller order functions of (1/r) uniformly for

k = l,2...,r-l. The above equation implies that {a /b } convergesr r

to d. However, this leads to a contradiction since the monotonic

increasing nature of {a : r>s} implies that of {(a /b ): r >s}
r r r -

and hence it is impossible that

a a
lim- d <-A

b b

Hence, we cannot have s such that (a /b )> d. By symmetry, we can
5 5

also conclude that it is impossible that (a /b ) <d for some s.5S

Consequently (Aslbs ) = d for all s> 1.
s s_

Remark 4. As corollaries of Theorems 2.1 and 2.2, one can obtain

characterizations of many well known discrete probability distri-
butions by special choices of ((a n,b n), n>0}. For instance an

improved version of Chatterjee's (1963) result is as follows:

Theorem 2.3. Let (X,Y) be such that

S(rjr) - hra b /c
r r0 rr-ilr /o~.

S(rjr+l) = hr a b c
r4-l r 1 r+1'

and
S(r r+2) - hr 2 a b c

3 r+l r 2 r+2'
r 0,1,2,...

where a ,b ,c and h are defined in Theorem 2.2. If
n n n n

P(Ynr1X=Y) =P(Y=rlX-Y+I)-P(Y-riX-Y+2), r 0,l,...,

then
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hn "Aan and gn = (g0 /c 0 )cn n, n l,2,...,

for some constants A, a and a >0.

Theorem 2.4. Let (X,Y) be such that

a (A+rt)(a +rt) (r,c)
S (rr) = r

(a +rt)A A+rt) (rtc) ,r+, ,

S O(r )a 
b (A+r qt) (al+rt) 

( r c)
s (rl r~) = trc)

(a +rt)A(Ai+--t)

r~b (A+rt) b +rt) (r,c)

S(0lr) =r r _ __ 1,(b r b +rt)A(Alr,

ar b rl(A+r+t) (b r+r t) (,c
s~~ (4_1 rr) ll

(b r+lr t ) A(A+r+t) (r+l, c)

where an, b and A are as defined in Theorem 2.2. If the asser-

tion (i) of Theorem 2.3 is valid, then a - constant independentlyn

of n, and {gn} is GEPD (A,t,c,X) for some X >0.

Remark 5. If bn = an = 1/n! n>O and hn = Lpn/(l-Pn)] I /2 for all

n > 1 in Theorem 2.3, then we obtain Chatterjee's (1963) result.

3. SOME VARIANTS OF MORAN'S RESULTS

Woodbury (1949) has considered a general Bernoulli scheme in

which the probability of a success at a given trial depends on

the number of successes in previous trials. Let Pr E(0,1) be the

probability of a success in a trial given that (r-1) of the ear-

lier trials resulted in successes. If C(rjn) denotes the prob-

ability of r successes in n trials, then it is easy to check

the following

" "* 1 e v ,' " " " '' ,r -.- " ",:': ",.-..'...-..."..".;.'V V ''."";.'.. , ': .".
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C(rln) -p r C Cr-1 n-1) + Cl-P -+I ) c Cr l n - 1 ) ; r-O,l,....n;n >1

with

Cr 1) -sOr r = 0,1,... (3.1)

where 6.. is the Kronecker delta. Many authors have studied this
1J

model. Suzuki (1980) has given a historical sketch of this model

and studied in some detail the special case where pr =p for r <m

and p r= yp for r >m, m> 1, where p and y are real numbers in

(0,1). This model can be generalized to the case where the

probability of a success depends also on the number of trials.

If Pr,n denotes the probability in such a case, then we have

C(rjn) --pr,n C(r-l In-1) + (1-P r+l,n }C~rjn-l); r-0,1,...n;n>i1,

with

C(r 0) =60r , r = 0,1,.... (3.2)

Now, let ZIE 2 ,... be a sequence of non-degenerate indepen-

dent C0-1 valued) Bernoulli random variables and let (,X,Y) be as

defined in the previous section such that P(X-0) = g <1 and

n

S(rjn) = P( I Zi mr), r=0,l,...,n (3.3)

for all n for which gn> 0. If {p}_ is the corresponding se-

quence of the probability of success, then it is not difficult to

see that S(rln) given in (3.3) satisfies (3.2) with p p for
r,n n

all r=0,1,...,n and each n (i.e., the one in which the probab-
ility of success depends only on the number of trials). Kimeldorf

et al. (1981) used this model and they established the following

result.

Theorem 3.1. Let X,Y,Zl,Z2 ,... be as defined above such that Pn

are equal for at least two values of n. Then

P(Y-ri X-Y) -PCY-rlX=Y+I), P(X-Y=rIY=0)-P(X-Y=rIY-l;

r =0,1,..., (3.41
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iff pn = constant independently of n>l and gn is a Poisson dis-
ribution.

The following theorem shows that a similar result holds when

the survival distribution is taken as the one resulting from

Woodbury scheme for Bernoulli trials.

Theorem 3.2. Let (X,Y) be a random vector with non-negative

integer-valued components such that

P(Y-r,X-n) - C(rln)g , r = 0,1,...,n; n>O,

where {C nCrn): r = O,1,...,n, nO) is as defined in (3.1) andn

go < 1. Suppose that for at least two distinct integers n1 and

n we havep = p * Then the following are equivalent:

i) Condition (3.4) is valid.

(ii) pn = constant independently of n and {gn is Poisson.

(iii) Y is independent of X-Y.

Proof. It is not difficult to see (ii) -> (iii) -U (i) and hence

it is sufficient to show that i) -> (it). Suppose (i) is valid.

Then we have

C(rl r)g r/P(X.Y) = C(rI r+l)gr 1 /PC(X"Y+l)

and r 0,1,... (3.5)
CCOIr)gn/PCY=0) - C(llr+l)g+l/P=Y-l)

From C3.1) it follows inductively that
r

CCrr) - U p
i-l

r r+l
C(rlr+l) - II p !l-pj)

C(OIr) - (1-P 1 )r
r+1

C(llr+l) - p (l-PlIi( P2 r~l-i"
i-e

Hence (3.5) implies that
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r+l r+l r+1-i
V.l(1- Pi) C I ,. (lP2)/ (l-Pi)] l -  r 1929...

ii i-i

for some c >0. This leaus to

r
l-Pr*l- c[(1-P 2 )/(1-Pl)], r-2,3,...

Since pn = P and n n, we must have P -p and therefore
S ncePjmP 1 2* 2 1

Pr 3 pl kor al r - 2,3,... Substituting in (3.5), we see that

9 Ag /(r+l), where A - [P(X-Y+I)/P(X-Y)](l-pl). This yieldsgr~r
that X has a Poisson distribution.

Theorems 3.1 and 3.2 raise the question concerning the valid-

ity of the result when the survival distributions are obtained

from a generalized Woodbury's model (i.e. when the probabilities

of successes are allowed to depend on both the number of successes

and the order of trials). The answer to this question is in the
a+2-lc

negative. For example, if we set p r,n - -- c in (3.2) for
a+b~n-lc

some some c >0, then induction argument implies that for each

n >0, C(r n) is MPED (n,a,b,c,O). Hence Theorem 3 applies for

any c> 0 but Pr,n is not independent of either r or n.

4. AN EXTENSION OF PATIL-SESHADRI RESULT

Patil and Seshadri (.1964) have given characterizations of

some discrete and continuous distributions b~sed on a specific

form of the conditional distribution of Y given X and indepen-

dence of Y and X-Y. Recently, Panaretos (1982) extended the

Patil-Seshadri result by considering only partial independence of

Y and X-Y. In the following theorem, we prove the basic results

of Panaretos under less restrictive conditions.

Theorem 4.1. Let (X,Y) be a random vector of non-negative real

valued components such that P(X >.Y) - 1, and there exist integers
n o 00 < n1 < ... < r (with r such. that P (Ynni-n I >,

i - 0,1,...,r, and every integer in (n r,nr+nri), where nr is the

minimum of (ni-ni 1) over 1 <i <r, is contained in the semigroup
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generated by 10,1,...,n r. Also assume that a version of the con-
.-itional distributions {{S(mJ))} is such that S(mjm+n) >0 for

i-O,l,...,r and m= 0,1,...,YR, the right extremity of the dis-
tribution of Y. Then the condition

P(Y-mX4Y-0) -uP(Y-mlX-Y-n1), mi0,1,...;i=l,...,r (4.1)

implies that

P(X-n) _ PX=XO)c n, n-1,...,n r+YR

for some sequence fc } determined uniquely by {{S(mn)I} and some
n

positive X.

Proof. The condition (4.1) implies that
9ms (m In) gmni S (m I m n)

P(X-Y) -p(x.Yni) •m-0,1,..,Y (4.2)

Define for 0<n<n +Y R

I if gn-0

0 if g #0.

Then it follows from (4.2) that u -0 on {n,n 1,...,n }n
n rrr ir1 'and hence un -u0 for all n. Since there is at least one positive

gn for 0 <n <nr+Yr, in view of P(X-Y) >0, we can then conclude

gn > 0 for all ne {0,1,...,nr+Yr}.

From (4.2), we have the following identity with both sides
positive

Sgm '.. s (m:+l,,.l+ i) s mI M) gm+l"" (.3
g S(m+llm+il) S(m m+n) i •

Define now for 0<n<nr+YR -1
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1 if n - 0,

the v mcorresponding to the minimm of

m<n such that (g.+,/gm)- c(m'n) (gn~/gn)
V for some c(m,n) determined uniquely by

{S(.I.)} if such a representation is possible
and n > 1,

max v +1 if the representation is riot
0<m~n
possible and n>l1.

Now, essentially the same argument as in the case of {u n implies

than v n-v 0for all ne {0,1,....,n r+YR-11. Consequently, it fol-

lows that for evary l <n <n r+Y R-1

- = L[c(m,n)1J 91

which implies the required result with A~ - (g 1 /go) for

2 <n <n +Y R. The result for n -1 easily follows.

Remark 6. If S(mln) is taken to be of the form a mb I c n, then
the condition on S(mln) in the theorem reduces to a m>0 for all

0 <m <YR and b,$ b n,"..,bn > 0 with otherI b ' s non-negative.
- - R 0 n1  r

In that case, clearly (4.1) implies that

P(X-n) -P(X=0)(c n/c )X n Pn 0,1,. .. ,n r Y R

for some X >0, where {c } is the convolution of {a Iand {b I

Remark 7. If we replace in the Theorem, the condition that every

integer in (n r Inr +n ri) is contained in the semigroup generated

by {nl..n}by that the largest common divisor of n -n~ 1

i-l,..,ris unity, the result does not remain valid.
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